Analysis and Short-Term Forecasting of Highway Traffic Flow in Slovenia
نویسندگان
چکیده
Analysis and short-term forecasting of traffic flow data for several locations of the Slovenia highway network are presented. Daily and weekly seasonal components of the data are analysed and several features are extracted to support the forecasting. Various short-term forecasting models are developed for one hour ahead forecasting of the traffic flow. Models include benchmark models (random walk, seasonal random walk, naive model), AR and ARMA models, and various configuration of feedforward neural networks. Results show that the best forecasting results (correlation coefficient R > 0.99) are obtained by a feedforward neural network and a selected set of inputs but this sophisticated model surprisingly only slightly surpasses the accuracy of a simple naive model.
منابع مشابه
Traffic Flow Characteristics of Isolated Off-ramps in Iranian Expressways
The purpose of this study was to investigate traffic flow characteristics at off-ramp junctions in Iranian expressways. The study was conducted on the traffic behavior in isolated off-ramp vicinity of 6-lane expressways. The database consisted of traffic flow and traffic speed information extracted from videotapes. The relationship between diverging traffic flow in the right lane of expressway ...
متن کاملAdaptive Online Traffic Flow Prediction Using Aggregated Neuro Fuzzy Approach
Short term prediction of traffic flow is one of the most essential elements of all proactive traffic control systems. Although various methodologies have been applied to forecast traffic parameters, several researchers have showed that compared with the individual methods, hybrid methods provide more accurate results . These results made the hybrid tools and approaches a more common method for ...
متن کاملMachine Learning Approaches for Traffic Volume Forecasting: A Case Study of the Moroccan Highway Network
In this paper, we aim to illustrate different approaches we followed while developing a forecasting tool for highway traffic in Morocco. Two main approaches were adopted: Statistical Analysis as a step of data exploration and data wrangling. Therefore, a beta model is carried out for a better understanding of traffic behavior. Next, we moved to Machine Learning where we worked with a bunch of a...
متن کاملShort Term Load Forecasting by Using ESN Neural Network Hamedan Province Case Study
Abstract Forecasting electrical energy demand and consumption is one of the important decision-making tools in distributing companies for making contracts scheduling and purchasing electrical energy. This paper studies load consumption modeling in Hamedan city province distribution network by applying ESN neural network. Weather forecasting data such as minimum day temperature, average day temp...
متن کاملShort-term traffic flow forecasting with spatial-temporal correlation in a hybrid deep learning framework
Deep learning approaches have reached a celebrity status in artificial intelligence field, its success have mostly relied on Convolutional Networks (CNN) and Recurrent Networks. By exploiting fundamental spatial properties of images and videos, the CNN always achieves dominant performance on visual tasks. And the Recurrent Networks (RNN) especially long short-term memory methods (LSTM) can succ...
متن کامل